
An der Leiten 37
D-91177 Thalmässing

Web: www.pasolfora.com

pasolfora GmbH

26/02/2016

HiPAS
High Performance Adaptive

Schema Migration with
Minimum Downtime Option

Andreas Prusch
 Steffan Agel

Andreas.Prusch@pasolfora.com
Steffan.Agel@pasolfora.com

26/02/2016 | 2

Background

 Minimum Downtime Schema Migration and Continous
Replication
 needed very often
 business and data critical
 high demand of intensive planning

 Implemented completely in PL /SQL
 adding up the best practices from Data Pump, O2O, Golden Gate
 only one PL/SQL package on source and destination

 Academic approach
 Self Adaptive (artificial intelligence)
 Developed together with the University of Potsdam/Berlin

26/02/2016 | 3

Agenda

Adapted from Information Systems Research Framework [1]

26/02/2016 | 4

Migration Challenges

 Short Downtime
 expensive unavailability due to opportunity costs

 Storage I/O Controller Utilization
 average utilization of 70% as optimal [2]

 table diversity (empty, small, very large), up to 70,000 tables
 Endianness

 byte order changes, e.g., from Solaris to Linux

Adapted from [2]

26/02/2016 | 5

Migration Approach
Differentiation

 Invocation layer
 Storage
 OS
 Database

 change of platform
 change of endianness
 change of character set
 Downtime proportionality

 Size of migration data
 Data alteration rate

26/02/2016 | 6

Prior Analysis

Average Structure of Allocated Data
 (based on 41 productively running SAP Systems)

 irrelevant data can be excluded when migrating on
logical database layer

26/02/2016 | 7

HiPAS Architecture

Everything is a tuple

26/02/2016 | 8

Adaptive Data Transfer

 Enabling adaptive behavior during transfer phase
 partitioning into equally sized transfer bundles
 Number of running transfer jobs can be reduced or increased

 Two approaches were developed and evaluated
 Adaption: based on an incremental adjustment process, until

changes do not evoke further improvements, thus, reaching the
state of an optimal parallelization degree

 Anticipation: makes continuously new modification decisions
independently of each other, based on knowledge about used
and monitored resources

Figure adapted from [3]

26/02/2016 | 9

Self-Adaptive Software

“Self-adaptive software evaluates its own behavior and changes
behavior when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when better functionality or
performance is possible.” [4]

“Self-adaptive software modifies its own behavior in response to
changes in its operating environment. […]” [5]

Self-Properties of self-adaptive software [6]

 Self-configuring
 Self-healing
 Self-optimizing
 Self-protecting

26/02/2016 | 10

Design Space Dimensions

Observation
 Environment-Awareness

 Storage System
 CPU
 Memory

 Self-Awareness
 Number of running jobs

Presentation
 Concurrency events
 Average write time
 Average read time
 Redo log buffer size
 Available memory size
 etc.

Control
Master/slave control
pattern in distributed
 system

Identification and Enabling
Adaption
 Plugin architecture
 Table MIG_Control as

interface

[7]

26/02/2016 | 11

Adaptive Capabilities of HiPAS

 „Optimizer“ plugin for data transfer phase
acts according to MAPE feedback loop [6]

Database SystemDatabase System

26/02/2016 | 12

Master/Slave Control Pattern

Control Dimension

Adapted from [7]

26/02/2016 | 13

Monitor, Analyse and Plan

 Optimizer analyses system information, e.g.:
 Concurrency events
 Average write/read time
 Redo log buffer size
 Available memory size

 Optimizer plans:
 writes “STOP“/“CONTINUE“-command

 Optimizer writes log string:

“Prev Jobs: 40/ Jobs: 40 Max Jobs: 400 #
Read Avg: 3.32(20-40) # Write Avg: 105.9(100-
200) # R_Read Avg: .12(20-40) # R_Write Avg: .
3(20-40) # R Fail Ind: 3 conc:3026(2607)
redo:5720763732(5776886904) r_conc:5157(5069) #
numjobs > 0 # Jobs being stopped: 0 # (Resource
Overload) and numjobs > minjobs and
jobs_being_stopped = 0 # Running: 20/Stopping:
 5 on inst:1 # Running: 20/Stopping: 5 on inst:2”

26/02/2016 | 14

Evaluation

Adaption of parallelization degree according to
system environment and migration data

~ 123 MByte/s per 1 gbit network interface
~ 1 GByte/s per 10 gbit network interface

26/02/2016 | 15

How does it work ?

26/02/2016 | 16

How does it work ?

PL/SQL only
SQLNET only

l no temporary Storage necessary
Source and Destination RAC aware

l automatic multi instance parallelization
Everything protected by Oracle transactional

integrity
l no data loss possible
l Restart after failure / server / network outage

l automatically
l no Re-copy of row sets

Parallel Index Build

26/02/2016 | 17

How does it work ?

dbms_metadata on source
Stats on source
create table extents on dest
PL/SQL Long to LOB conversion on source
University Solution for transfer parallelization
create dbms_scheduler jobs
 transfer table rows, LOBs
calibrate IO / Auto DOP for indexing on dest
Count rows and select „source“ minus „dest“
generate compliance report

26/02/2016 | 18

Conclusions

non-adaptive and sequential migrations leave
useful resources idle or need to be tuned manually
l „self adaptive is always better“

 logical transfer
l platform, version, endianess and character set

independent
Ultra Fast parallel LOB interface
Copy Performance of 3 to 5 TByte per Hour

l adequate Network and I/O Bandwith necessary
Easy Fallback – source stays untouched

26/02/2016 | 19

Conclusions

Remap everything
l User
l Tablespaces
l Table / Tablespace Mapping
l create object attributes
l Index table compression

Compliance Check
Diff Report for rows and metadata

26/02/2016 | 20

Minimum Downtime Option

works without EE or Partitioning
provides same functionality and benefits

l easy fallback
l protected by oracle transactional integrity
l Remap everything
l Diff Report for all rows and metadata

26/02/2016 | 21

Minimum Downtime - Capture

Capture changes while transfer base data
l List of Transactions

l Trigger
l generate list of changes SCN based
l Old Value / New Value / SCN / ID

l Uses Log Stream to doublecheck
Generates List of Sqls

l Capture / Apply to other DB Platforms possible
Parallel Capture and Apply

26/02/2016 | 22

Minimum Downtime – SCN Copy

Dirty Read Option dismissed
l „Dirty“ Reads (different SCNs per Rowset)

l merge changes at the end of transfer
l Row need apply / Row newer than change

l like Oracle Recovery
Select … as of ….. (same SCN for all Rowsets)

l Undo Guarantee
l generates insert sqls for multi DB Plattform
l Trigger on Large Tables
l Small Tables in switchover downtime
l apply list of changes ordered

26/02/2016 | 23

Replication

 Initial Load by Hipas Base Schema Transfer
Replication based on Hipas capture
Trigger based

l thin and fast implementation (rac aware)
l blacklist / whitelist

l object / column
l generates list of sqls

l replications to other db platforms possible

26/02/2016 | 24

Replication

Self Repair / Healing after Outtages
l log stream to extract / apply gaps

Management by GUI
CDC / Streams alternative
Parallel Capture and Apply
EE or Partitioning not necessary

26/02/2016 | 25

Presentation References

1) A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information
 Systems Research”. MIS Quarterly

2) Vol. 28 No.1., 2004, p. 80. G. Somasundarum and A. Shrivastava, Information
Storage and Management - Storing, Managing, and Protecting Digital Information.
EMC Education Services, Wiley Publishing Inc. Inianapolis 2009, p. 35.

3) J. A. Martin Hernandez, J. de Lope and D. Maravall, “Adaptation, anticipation
and rationality in natural and artificial systems: computational paradigms
mimicking nature.”, Natural Computing, Volume 8, Issue 4, Springer Netherlands,
2009, pp. 758-765.

4) R. Laddaga, Self-adaptive software. Tech. Rep. 98-12, DARPA BAA., 1997
5) P. Oreizy, M. M. Gorlick , R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A.

Quilici,, D. S. Rosenblum, and A. L. Wolf, An architecture-based approach to self-
adaptive software, IEEE Intel. Syst., 1999

6) IBM. An architectural blueprint for autonomic computing. Tech. rep., IBM. 2003.
7) Y. Brun, R. Desmarais, K Geihs, M. Litoiu, A. Lopes, M. Shaw, and M. Smit, A Design

Space for Self-Adaptive Systems

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

